

11s and 12s

Times Table Booklet

Name:	 -
Class:	
Rock Name:	

School's out for the summer! Wahoo! How cool is that?!While your teachers top up their tan, mark your books and catch up on sleep, why don't you have a go at practising your times tables.

Contained within this booklet are a number of activities to keep your mind occupied over the next few weeks. Each activity is explained on the page.

Good luck and have a rockin' holiday!

How do you feel about the 11s and 12s? Draw the face that describes how you feel about each 'I can' statement.

Self assessment	\odot	<u>:</u> :	
I can count in 11s			
I can count in 12s			

The 11s and 12s.

Use this table of facts to help you later on or you can hide the answers and get a grown-up to test you.

	-
1 ×11= 11	1 × 12 =12
2 ×11= 22	2 × 12 =24
3 ×11 =33	3 × 12 =36
4 × 11=44	4 × 12 =48
5 × 11=55	5 × 12 =60
6 × 11=66	6 × 12 =72
7 × 11=77	7 × 12 =84
8 × 11=88	8 × 12 =96
9 × 11=99	9 ×12=108
10 ×11=110	10×12=120
11×11=121	11×12=132
12×11=132	12×12=144

115: Skip count in 11s to complete the track.

11 22							
-------	--	--	--	--	--	--	--

132	121				

Complete the bar models.

11 × 3 =					

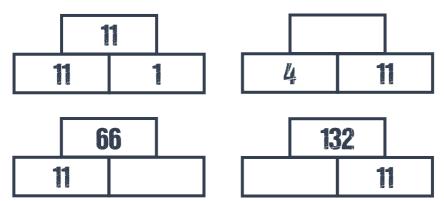
11 × =							
11							

• Mark this test paper with a tick or cross:

a)
$$11 \times 4 = 44$$

b)
$$11 \times 1 = 10$$

e)
$$11 \times 3 = 13$$


f)
$$11 \times 0 = 11$$

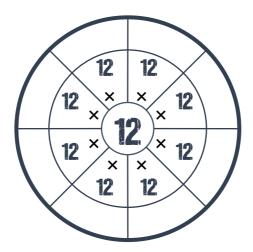
Use your knowledge of the 11s to fill in the

missing brick. The first one has been done for you.

- Circle the numbers that don't belong in the 11s.
- 11, 13, 22, 32, 44. a)
- 132, 121, 109, 89, 77. b)
- 66, 77, 88, 99, 110. c)
- Complete the gaps by counting in 11s.

Skip count in 11s by circling the numbers.

0	.	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99



Column A	Column B
$11 \times 2 = 22$	$11 \times 12 = 132$
$11 \times 3 = 33$	$11 \times 13 = 143$
11 × 4 =	11 × 14 =
11 × 5 =	11 × 15 =
11 × 6 =	11 × 16 =
11 × 7 =	11 × 17 =
11 × 8 =	11 × 18 =
11 × 9 =	11 × 19 =
11 × 10 =	11 × 20 =

Do you notice a correlation between 11x2 and 11x12? Explain the pattern in words using 'ones', 'tens' and digits.'

: Multiply the numbers by the centre number.

Complete the bar models.

12 ×=							
12	12	12	12	12	12	12	

× 12 =										
12										

Draw a line through the 'counting in 12s' number maze starting at 0 and ending at 144.

0	6	12.	14	20
12	13	18	72	84
24	36	48	60	96
42	30	29	23	108
46	52	58	120	132
114	45		25	144

Answer the following:

a) $0 \times 12 =$

b) $12 \times 12 =$

c) $12 \times 4 =$

d) $6 \times 12 =$

e) $4 \times 12 =$

f) Half of 12 =

Complete the blank brick walls using different

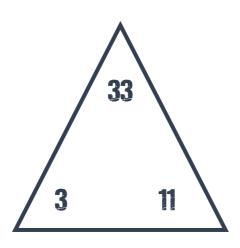
12s factor pairs. One has been completed for you.

24 12 2	

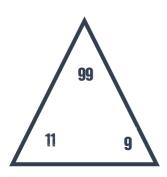
The 11s and 12s: Complete the tables grids.

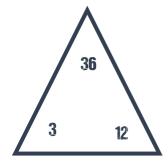
×	11	12
10		
9		
2		
8		
5		
7		
6		
4		
3		

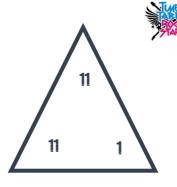
×	2	5
× 2		
5		
6		
3		
5		
8		
10		
7		
9		


Creck up: How are you feeling about the 11s and 12s so far? Draw the face that describes how you feel about each 'I can' statement.

Self assessment	\odot	<u>:</u> :	
I can count in 11s			
I can count in 12s			


The 11s and 12 fact families.


Fact family example: On the next page you will use only the numbers in the fact triangle to find the associated fact family solutions in the tables for the 11s and 12s.


3	×	11	=	33
11	×	3	=	33
33	÷	3	=	11
33	÷	11	=	3


×	=	
×	=	
÷	=	
÷	=	

×	=	
×	=	
÷	=	
÷	=	

×	=	
×	=	
÷	=	
÷	=	

×	=	
×	=	
÷	=	
÷	=	